间隙锁-只改一行为什么锁这么多
在上一篇文章中,我和你介绍了间隙锁和 next-key lock 的概念,但是并没有说明加锁规则。间隙锁的概念理解起来确实有点儿难,尤其在配合上行锁以后,很容易在判断是否会出现锁等待的问题上犯错。
所以今天,我们就先从这个加锁规则开始吧。
首先说明一下,这些加锁规则我没在别的地方看到过有类似的总结,以前我自己判断的时候都是想着代码里面的实现来脑补的。这次为了总结成不看代码的同学也能理解的规则,是我又重新刷了代码临时总结出来的。所以,这个规则有以下两条前提说明:
- MySQL 后面的版本可能会改变加锁策略,所以这个规则只限于截止到现在的最新版本,即 5.x 系列 <=5.7.24,8.0 系列 <=8.0.13。
- 如果大家在验证中有发现 bad case 的话,请提出来,我会再补充进这篇文章,使得一起学习本专栏的所有同学都能受益。
因为间隙锁在可重复读隔离级别下才有效,所以本篇文章接下来的描述,若没有特殊说明,默认是可重复读隔离级别。
**我总结的加锁规则里面,包含了两个“原则”、两个“优化”和一个“bug”。
- 原则 1:加锁的基本单位是 next-key lock。希望你还记得,next-key lock 是前开后闭区间。
- 原则 2:查找过程中访问到的对象才会加锁。
- 优化 1:索引上的等值查询,给唯一索引加锁的时候,next-key lock 退化为行锁。
- 优化 2:索引上的等值查询,向右遍历时且最后一个值不满足等值条件的时候,next-key lock 退化为间隙锁。
- 一个 bug:唯一索引上的范围查询会访问到不满足条件的第一个值为止。
我还是以上篇文章的表 t 为例,和你解释一下这些规则。表 t 的建表语句和初始化语句如下。
CREATE TABLE `t` (
`id` int(11) NOT NULL,
`c` int(11) DEFAULT NULL,
`d` int(11) DEFAULT NULL,
PRIMARY KEY (`id`),
KEY `c` (`c`)
) ENGINE=InnoDB;
insert into t values
(0,0,0),(5,5,5),(10,10,10),
(15,15,15),(20,20,20),(25,25,25);
接下来的例子基本都是配合着图片说明的,所以我建议你可以对照着文稿看,有些例子可能会“毁三观”,也建议你读完文章后亲手实践一下。
案例一:等值查询间隙锁
第一个例子是关于等值条件操作间隙:
由于表 t 中没有 id=7 的记录,所以用我们上面提到的加锁规则判断一下的话:
- 根据原则 1,加锁单位是 next-key lock,session A 加锁范围就是 (5,10];
- 同时根据优化 2,这是一个等值查询 (id=7),而 id=10 不满足查询条件,next-key lock 退化成间隙锁,因此最终加锁的范围是 (5,10)。
所以,session B 要往这个间隙里面插入 id=8 的记录会被锁住,但是 session C 修改 id=10 这行是可以的。
案例二:非唯一索引等值锁
第二个例子是关于覆盖索引上的锁:
看到这个例子,你是不是有一种“该锁的不锁,不该锁的乱锁”的感觉?我们来分析一下吧。
这里 session A 要给索引 c 上 c=5 的这一行加上读锁。
- 根据原则 1,加锁单位是 next-key lock,因此会给 (0,5]加上 next-key lock。
- 要注意 c 是普通索引,因此仅访问 c=5 这一条记录是不能马上停下来的,需要向右遍历,查到 c=10 才放弃。根据原则 2,访问到的都要加锁,因此要给 (5,10]加 next-key lock。
- 但是同时这个符合优化 2:等值判断,向右遍历,最后一个值不满足 c=5 这个等值条件,因此退化成间隙锁 (5,10)。
- 根据原则 2 ,只有访问到的对象才会加锁,这个查询使用覆盖索引,并不需要访问主键索引,所以主键索引上没有加任何锁,这就是为什么 session B 的 update 语句可以执行完成。
但 session C 要插入一个 (7,7,7) 的记录,就会被 session A 的间隙锁 (5,10) 锁住。
需要注意,在这个例子中,lock in share mode 只锁覆盖索引,但是如果是 for update 就不一样了。 执行 for update 时,系统会认为你接下来要更新数据,因此会顺便给主键索引上满足条件的行加上行锁。
这个例子说明,锁是加在索引上的;同时,它给我们的指导是,如果你要用 lock in share mode 来给行加读锁避免数据被更新的话,就必须得绕过覆盖索引的优化,在查询字段中加入索引中不存在的字段。比如,将 session A 的查询语句改成 select d from t where c=5 lock in share mode。你可以自己验证一下效果。
案例三:主键索引范围锁
第三个例子是关于范围查询的。
举例之前,你可以先思考一下这个问题:对于我们这个表 t,下面这两条查询语句,加锁范围相同吗?
select * from t where id=10 for update;
select * from t where id>=10 and id<11 for update;
你可能会想,id 定义为 int 类型,这两个语句就是等价的吧?其实,它们并不完全等价。
在逻辑上,这两条查语句肯定是等价的,但是它们的加锁规则不太一样。现在,我们就让 session A 执行第二个查询语句,来看看加锁效果。
现在我们就用前面提到的加锁规则,来分析一下 session A 会加什么锁呢?
- 开始执行的时候,要找到第一个 id=10 的行,因此本该是 next-key lock(5,10]。 根据优化 1, 主键 id 上的等值条件,退化成行锁,只加了 id=10 这一行的行锁。
- 范围查找就往后继续找,找到 id=15 这一行停下来,因此需要加 next-key lock(10,15]。
所以,session A 这时候锁的范围就是主键索引上,行锁 id=10 和 next-key lock(10,15]。这样,session B 和 session C 的结果你就能理解了。
这里你需要注意一点,首次 session A 定位查找 id=10 的行的时候,是当做等值查询来判断的,而向右扫描到 id=15 的时候,用的是范围查询判断。
案例四:非唯一索引范围锁
接下来,我们再看两个范围查询加锁的例子,你可以对照着案例三来看。
需要注意的是,与案例三不同的是,案例四中查询语句的 where 部分用的是字段 c。
这次 session A 用字段 c 来判断,加锁规则跟案例三唯一的不同是:在第一次用 c=10 定位记录的时候,索引 c 上加了 (5,10]这个 next-key lock 后,由于索引 c 是非唯一索引,没有优化规则,也就是说不会蜕变为行锁,因此最终 sesion A 加的锁是,索引 c 上的 (5,10] 和 (10,15] 这两个 next-key lock。
所以从结果上来看,sesson B 要插入(8,8,8) 的这个 insert 语句时就被堵住了。
这里需要扫描到 c=15 才停止扫描,是合理的,因为 InnoDB 要扫到 c=15,才知道不需要继续往后找了。
案例五:唯一索引范围锁 bug
前面的四个案例,我们已经用到了加锁规则中的两个原则和两个优化,接下来再看一个关于加锁规则中 bug 的案例。
session A 是一个范围查询,按照原则 1 的话,应该是索引 id 上只加 (10,15]这个 next-key lock,并且因为 id 是唯一键,所以循环判断到 id=15 这一行就应该停止了。
但是实现上,InnoDB 会往前扫描到第一个不满足条件的行为止,也就是 id=20。而且由于这是个范围扫描,因此索引 id 上的 (15,20]这个 next-key lock 也会被锁上。
所以你看到了,session B 要更新 id=20 这一行,是会被锁住的。同样地,session C 要插入 id=16 的一行,也会被锁住。
照理说,这里锁住 id=20 这一行的行为,其实是没有必要的。因为扫描到 id=15,就可以确定不用往后再找了。但实现上还是这么做了,因此我认为这是个 bug。
我也曾找社区的专家讨论过,官方 bug 系统上也有提到,但是并未被 verified。所以,认为这是 bug 这个事儿,也只能算我的一家之言,如果你有其他见解的话,也欢迎你提出来。
案例六:非唯一索引上存在"等值"的例子
接下来的例子,是为了更好地说明“间隙”这个概念。这里,我给表 t 插入一条新记录。
insert into t values(30,10,30);
新插入的这一行 c=10,也就是说现在表里有两个 c=10 的行。那么,这时候索引 c 上的间隙是什么状态了呢?你要知道,由于非唯一索引上包含主键的值,所以是不可能存在“相同”的两行的。
可以看到,虽然有两个 c=10,但是它们的主键值 id 是不同的(分别是 10 和 30),因此这两个 c=10 的记录之间,也是有间隙的。
图中我画出了索引 c 上的主键 id。为了跟间隙锁的开区间形式进行区别,我用 (c=10,id=30) 这样的形式,来表示索引上的一行。
现在,我们来看一下案例六。
这次我们用 delete 语句来验证。注意,delete 语句加锁的逻辑,其实跟 select ... for update 是类似的,也就是我在文章开始总结的两个“原则”、两个“优化”和一个“bug”。
这时,session A 在遍历的时候,先访问第一个 c=10 的记录。同样地,根据原则 1,这里加的是 (c=5,id=5) 到 (c=10,id=10) 这个 next-key lock。
然后,session A 向右查找,直到碰到 (c=15,id=15) 这一行,循环才结束。根据优化 2,这是一个等值查询,向右查找到了不满足条件的行,所以会退化成 (c=10,id=10) 到 (c=15,id=15) 的间隙锁。
也就是说,这个 delete 语句在索引 c 上的加锁范围,就是下图中蓝色区域覆盖的部分。
这个蓝色区域左右两边都是虚线,表示开区间,即 (c=5,id=5) 和 (c=15,id=15) 这两行上都没有锁。
案例七:limit 语句加锁
例子 6 也有一个对照案例,场景如下所示:
这个例子里,session A 的 delete 语句加了 limit 2。你知道表 t 里 c=10 的记录其实只有两条,因此加不加 limit 2,删除的效果都是一样的,但是加锁的效果却不同。可以看到,session B 的 insert 语句执行通过了,跟案例六的结果不同。
这是因为,案例七里的 delete 语句明确加了 limit 2 的限制,因此在遍历到 (c=10, id=30) 这一行之后,满足条件的语句已经有两条,循环就结束了。
因此,索引 c 上的加锁范围就变成了从(c=5,id=5) 到(c=10,id=30) 这个前开后闭区间,如下图所示:
这个例子对我们实践的指导意义就是,在删除数据的时候尽量加 limit。这样不仅可以控制删除数据的条数,让操作更安全,还可以减小加锁的范围。
案例八:一个死锁的例子
前面的例子中,我们在分析的时候,是按照 next-key lock 的逻辑来分析的,因为这样分析比较方便。最后我们再看一个案例,目的是说明:next-key lock 实际上是间隙锁和行锁加起来的结果。
你一定会疑惑,这个概念不是一开始就说了吗?不要着急,我们先来看下面这个例子:
现在,我们按时间顺序来分析一下为什么是这样的结果。
- session A 启动事务后执行查询语句加 lock in share mode,在索引 c 上加了 next-key lock(5,10] 和间隙锁 (10,15);
- session B 的 update 语句也要在索引 c 上加 next-key lock(5,10] ,进入锁等待;
- 然后 session A 要再插入 (8,8,8) 这一行,被 session B 的间隙锁锁住。由于出现了死锁,InnoDB 让 session B 回滚。
你可能会问,session B 的 next-key lock 不是还没申请成功吗?
其实是这样的,session B 的“加 next-key lock(5,10] ”操作,实际上分成了两步,先是加 (5,10) 的间隙锁,加锁成功;然后加 c=10 的行锁,这时候才被锁住的。
也就是说,我们在分析加锁规则的时候可以用 next-key lock 来分析。但是要知道,具体执行的时候,是要分成间隙锁和行锁两段来执行的。
小结
这里我再次说明一下,我们上面的所有案例都是在可重复读隔离级别 (repeatable-read) 下验证的。同时,可重复读隔离级别遵守两阶段锁协议,所有加锁的资源,都是在事务提交或者回滚的时候才释放的。
在最后的案例中,你可以清楚地知道 next-key lock 实际上是由间隙锁加行锁实现的。如果切换到读提交隔离级别 (read-committed) 的话,就好理解了,过程中去掉间隙锁的部分,也就是只剩下行锁的部分。
其实读提交隔离级别在外键场景下还是有间隙锁,相对比较复杂,我们今天先不展开。
另外,在读提交隔离级别下还有一个优化,即:语句执行过程中加上的行锁,在语句执行完成后,就要把“不满足条件的行”上的行锁直接释放了,不需要等到事务提交。
也就是说,读提交隔离级别下,锁的范围更小,锁的时间更短,这也是不少业务都默认使用读提交隔离级别的原因。
不过,我希望你学过今天的课程以后,可以对 next-key lock 的概念有更清晰的认识,并且会用加锁规则去判断语句的加锁范围。
在业务需要使用可重复读隔离级别的时候,能够更细致地设计操作数据库的语句,解决幻读问题的同时,最大限度地提升系统并行处理事务的能力。
经过这篇文章的介绍,你再看一下上一篇文章最后的思考题,再来尝试分析一次。
我把题目重新描述和简化一下:还是我们在文章开头初始化的表 t,里面有 6 条记录,图 12 的语句序列中,为什么 session B 的 insert 操作,会被锁住呢?